
Thesis no: BGD-2014-01

Automatic spotlight distribution for
indirect illumination

Lukas Orsvärn

Faculty of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in
partial fulfillment of the requirements for the degree of Bachelor of Science in Digital Game
Development. The thesis is equivalent to 10 weeks of full time studies.

Contact Information:
Author(s):
Lukas Orsvärn
E-mail: lukas.orsvarn@gmail.com

University advisor:
Stefan Petersson
Dept. of Creative Technologies

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Context. Indirect illumination – the light contribution from bounce
light in an environment – is an important effect when creating realistic
images. Historically it has been approximated very poorly by applying
a constant ambient term. This approximation is unacceptable if the
goal is to create realistic results as bouncing light contributes a lot of
light in the real world.
Objectives. This thesis proposes a technique to use a reflective
shadow map to place and configure spotlights in an environment to
approximate global illumination.
Methods. The proposed spotlight distribution technique is imple-
mented in a delimited real time graphics engine, and the results are
compared to a naive spotlight distribution method.
Results. The image resulting from the proposed technique has a lower
quality than the comparison in our test scene.
Conclusions. The technique could be used in its current state for
applications where the view can be controlled by the developer such
as in 3D side scrolling games or as a tool to generate editable indirect
illumination. Further research needs to be conducted to make it more
broadly viable.

Keywords: Reflective shadow map, global illumination,
spotlight.

i

Acknowledgments

I would like to extend sincere thanks to Stefan Petersson for his
valuable support and guidance throughout this project as my

supervisor.

I would also like to thank Max Danielsson and
Alexander Vestman for discussing ideas, providing feedback and

helping out when I got stuck with various programming issues.

ii

List of Figures

1.1 Indirect illumination. 1
1.2 Three components of an RSM. It also contains a depth buffer, not

shown here. 4

3.1 Overview of the proposed technique. 7
3.2 Spotlight matching criteria. 8
3.3 Spotlight sampler configuration refinement overview in chronolog-

ical order. 10
3.4 Spotlight sampler configuration without refinement. 11

4.1 Results of the proposed technique. Top row: with vertex coloring.
Bottom row: without vertex coloring. 13

4.2 Difference between when using one spotlight per texel and the pro-
posed technique. In this image the 0.0 to 0.5 color range has been
remapped to 0.0 to 1.0 to more clearly show the difference. 14

4.3 Difference between when using one spotlight per texel and the pro-
posed technique. 15

4.4 Spotlight placement in test scene. 16
4.5 Two spotlight types. 18

iii

Contents

Abstract i

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 3
1.3 Aim and Objectives . 4
1.4 Research Questions . 5
1.5 Method . 5

2 Terminology 6
2.1 Types of Spotlights . 6
2.2 Flux . 6

3 Technique 7
3.1 Overview . 7
3.2 Matching Spotlights . 8
3.3 Spotlight Sampler Configuration Refinement 9
3.4 Aggregating Spotlights . 11
3.5 Spotlight Generation . 11

4 Conclusion 13
4.1 Results . 13
4.2 Analysis . 17
4.3 Conclusions and Future Work . 17

References 20

Appendices

A Matching technique 22

B Configuration refinement technique 23

iv

Chapter 1
Introduction

Indirect illumination is the light contribution to a surface that does not come from
direct exposure to a light source. This thesis proposes a technique for automatic
distribution of spotlights in a 3D scene to approximate that effect. It works by
generating a reflective shadow map (RSM) and then distributing spotlights in the
scene based on that data. The purpose of this chapter is to place the thesis in a
bigger context as well as describe its scope and aim.

1.1 Background

(a) Indirect illumination off (b) Indirect illumination on

Figure 1.1: Indirect illumination.

Indirect illumination is a huge area of research for both real time and offline
applications. The effect makes a big difference in some scenes and less in others.
For instance, imagine a room with just one window with sunlight coming in as
in Figure 1.1. Without indirect illumination the room would be almost entirely
dark, save for the sunlight directly hitting the floor or walls and light coming
through the window from the sky. When indirect illumination is added to a scene
such as this, the room becomes much brighter. In some cases an entire room
could be sufficiently lit by indirect illumination alone.

1

Chapter 1. Introduction 2

This effect is present everywhere, and is very evident in indoor areas containing
surfaces that are hit by sunlight. In some scenes it is more subtle, like in an
outdoor scene on a cloudy day. But even then some real world scenes are not
reproducible without indirect illumination.

A very crude approximation of indirect illumination can be achieved by ap-
plying a static ambient term to the entire scene. In other words the indirect
illumination is reduced to a uniform, dim color to make sure nothing is too dark,
and thus the effect that light has when bouncing around in an environment is very
broadly approximated. It is possible to make point and spot lights contribute in-
direct illumination in a similar way. The bouncing light is then produced by
having light sources contribute some light to surfaces within its range that is not
dependent upon the angle of the surface relative to the position of the light, but
still has the same or similar falloff.

This way of approximating the effect by utilizing an ambient term has severe
limitations as it does not take into consideration the color of the surface that
reflects the light, nor is there any variability as to how much light reaches an
area. One might even argue that these techniques should not be considered
indirect illumination techniques at all since it is really more of a way to make
sure nothing is too dark than an attempt at imitating indirect illumination.

Static lightmaps can contain high quality pre-calculated global illumination [1].
A static lightmap is a pre-calculated texture containing light data that is mul-
tiplied with the color of a surface during rendering of the environment. There
are some significant drawbacks and advantages of this method. It is inherently
static, it needs to be pre-calculated and stored as the calculation process often
takes a long time. If a high quality shadow map is desired, the resolution of the
lightmap needs to be quite high, further increasing already lengthy calculation
times as well as load times and game size. Since it usually takes a long time to
calculate, it is impractical to create during runtime.

However these drawbacks will not affect an application that does not need
to update its light in real time, and the technique does provide high quality
visuals. This is the method of choice to create static lighting – and as part of
that – indirect illumination in a number of current game engines like the Source
Engine [2], Unreal Engine 4 [3] and Unity [4]. It can be combined with real time
shadows to achieve sharp shadows from direct sunlight and moving objects close
to the player, but use the smoother, high performance static lightmap in distances
and to get the indirect illumination effect. Our findings indicate that combining
static lightmaps and dynamic real time lightmaps in this manner is the technique
used in Counter-Strike: Global Offensive [5].

Another way of pre-computing indirect illumination is using spherical har-
monics [6]. This is a more recent technique that is a more accurate solution as
it does not only “paint” on the geometry in a scene, but instead saves light data
for several points in space. This data is then used in lighting calculations to get
the final image. While this technique takes more computing power than static

Chapter 1. Introduction 3

lightmaps, it also interacts with dynamic objects, something static lightmaps do
not do.

It is also possible to achieve indirect illumination in real time with no pre-
computation, this can be done with techniques such as cascaded light propagation
volumes [7] or voxel-based cone tracing [8]. Full real time indirect illumination
is something that has been more common in recent years as computers get more
powerful. However, these real time techniques are not as high quality as the
static lightmaps and often require much more processing power during runtime.
But since they update in real time as the scene changes, they work better with
dynamic scenes. Because they are fully dynamic they have to be really fast,
which makes it harder to make the light behave as expected. These problems
can be mitigated by the fact that indirect illumination is a subtle effect in some
situations, meaning imperfect results often suffice.

In short, indirect illumination is a huge area of research for both online and
offline graphics rendering. No solution has been found yet for real time applica-
tions that give great dynamic results in real time, while also being fast enough to
be usable on a broad range of hardware. The technique proposed in this paper
explores the use of spotlights to create indirect illumination. Current real time
rendering techniques like clustered deferred and forward shading allow for up to
around a million lights to be rendered in real time [9]. We will explore utilizing
this power by distributing spotlights in a scene offline that are then rendered as
normal spotlights during runtime to achieve indirect illumination. The focus is on
the placement and configuration of the spotlights in a scene to create the effect,
not the performance of the technique or the visual accuracy of the results.

The proposed technique could be used to create tools for level designers to
not only generate indirect illumination quickly, but also allow them to manually
edit the result for greater control.

1.2 Related Work
In an article written by Dachsbacher et al. a technique is proposed to use a
reflective shadow map (RSM) to create indirect illumination for the light emitted
by a spotlight. This technique was to serve as an extension of the standard shadow
map – that only contains the depth value of a texel – to enable calculating indirect
illumination in real time [10]. This is accomplished by saving the surface normal,
world position and flux value as seen in Figure 1.2 for each texel in addition to
the depth value. The new data is used to calculate indirect illumination.

The proposed technique requires enough information about the surfaces that
are hit by a directional light to be able to create a spotlight that has a hard-
coded spotlight angle and falloff. So the spotlight angle and falloff attributes do
not need to be saved for each individual spotlight. With that in mind, the data
needed for each spotlight is position, direction and color. This means each texel

Chapter 1. Introduction 4

(a) World position (b) Surface normal (c) Flux

Figure 1.2: Three components of an RSM. It also contains a depth buffer, not
shown here.

in an RSM contains the data needed to create a spotlight for our purposes.
Using an RSM to create spotlights was utilized in AMD’s Leo Demo that was

created to demonstrate their Forward+ [11] technique. Their implementation of
Forward+ was first detailed in a paper by Harada et al. 2011 [12], and later
explained further in GPU Pro4 [13]. Therein, a technique to create indirect
illumination for spotlights using RSMs is briefly mentioned. They generate an
RSM from the viewpoint of a spotlight and create new spotlights in real time
using the data in that RSM to create spotlight in a pre-defined pattern. The
proposed technique is based the same idea, but instead of generating spotlights
in real time from a spotlight, we generate spotlights offline from a directional
light with a focus on good spotlight placement.

1.3 Aim and Objectives
Aim: Develop, implement and evaluate a technique for automatically placing
spotlights in a 3D scene to apply indirect illumination.

Objectives:

1. Propose and define a spotlight distribution technique.

2. Create a delimited 3D graphics engine.

3. Implement the proposed spotlight distribution technique.

4. Test and evaluate the proposed technique.

Chapter 1. Introduction 5

1.4 Research Questions
1. Can a reflective shadow map (RSM) [10] be used to automatically place

spotlights in a 3D environment to create indirect illumination?

2. Will all surfaces visible in the RSM have one or more associated spotlights?

1.5 Method
An experimental application is created that implements the proposed spotlight
distribution technique. Results are gathered by saving images of a test scene. To
measure how well the technique works, two images are taken from the same place
in the scene, one where there is one spotlight per texel in the reflective shadow
map (RSM), and one where the proposed technique is utilized. The difference
between the two images are measured and visualized to show how they differ.

Chapter 2
Terminology

To make this work easier to grasp we have defined some words that are used
throughout the thesis. This chapter describes those words as well as other words
that are important to fully understand the technique and how it works.

2.1 Types of Spotlights
In our implementation of the proposed technique there is technically only one
type of spotlight. However the spotlights are given different names to signify how
they are used and thus hopefully make this text easier to understand. reflective
spotlights (RSes), aggregate spotlights (ASes) and sampling spotlights (SSes) are
all actually the same thing: a spotlight. The different names are just used to
indicate how they are used. Here follows a description the different types of
spotlights.

An RS is one that is created from a single texel in a reflective shadow map
(RSM). This name signifies that the spotlight is unaltered.

An AS is a spotlight created by aggregating several RSes.

An SS is a spotlight that is used to sample and compare RSes.

Again, keep in mind that these are only names used for spotlights to indicate how
they are used, all spotlights are technically the same.

2.2 Flux
Flux is the color that is reflected by a surface under some light condition. So
it does not only contain the color of the surface, or the color of the light that
hits that surface, but a combination of those two; the color of the light that
is reflected by that surface when hit by that light. Since the spotlights in the
proposed technique represent reflected light, this data is used as the color of the
spotlights.

6

Chapter 3
Technique

This chapter gives an overview of how the proposed technique works and then
delves into more detail on how specific parts are implemented. The experimental
application was developed using C++, so minor C/C++ terminology is present
in the text.

3.1 Overview

(a) A reflective shadow
map (RSM) is created

(b) RSes are created
from the RSM

(c) SSes are created
from the RSes

(d) ASes are gener-
ated from the RSes
and SSes

Figure 3.1: Overview of the proposed technique.

The technique relies on a reflective shadow map (RSM) to create spotlights in a
3D environment that are then aggregated according to certain rules to arrive at
the final spotlight distribution. Here follows a broad overview of the technique in
chronological order.

1. Figure 3.1a: An RSM is generated from the view of the directional light.
Each texel in an RSM contains the data necessary to create a spotlight; a
position, direction and color. With this data we are missing information
regarding the spot angle and falloff of the light cone. That data is however
not needed in this case since we will be approximating perfect diffuse re-
flection, so the angle will during rendering be set to cover 180 degrees, and
the light cone falloff is predefined as well.

7

Chapter 3. Technique 8

2. Figure 3.1b: A reflective spotlight (RS) is created for each texel in the
RSM using the data in the respective texels. Those RSes are put into a
list and pointers to them are put into each node they touch in an octree
to speed up later comparisons. The size of the spotlights when pointers to
them are put into the octree are the same as the distance value explained
in Section 3.2.

3. Figure 3.1c: A number of sampling spotlights (SSes) are created and their
configurations are optimized in the way described in Section 3.3.

4. Figure 3.1d: All RSes are aggregated into to their closest matching SS as
described in Section 3.4. Then the original RSes are deleted as they are no
longer needed. What remains is a set of aggregate spotlights that can be
used in rendering.

3.2 Matching Spotlights

(a) Positional angle (b) Distance (c) Color (d) Direction

Figure 3.2: Spotlight matching criteria.

At several points in the proposed technique we will need to compare spotlights
to one another to determine if their data match up closely enough. In this thesis
that action is referred to as “matching”. If two spotlights match one another, that
means they pass this comparison test. To “match two spotlights” is to put them
through this test.

Two spotlights are matching if the data in the spotlights match up to within
certain empirical limits. These limits pertain to the position, direction and color
values of a spotlight. All tests need to pass for two spotlights to be considered
matching. The limits used for our test scene can be found in Section 4.1 and the
code can be found in Appendix A. Here follows a description of the matching
tests.

• Positional angle, the dot product between the direction of one of the
spotlights and a vector pointing towards the other spotlight must be within
the set limit. This prevents spotlights that are in front of and behind one
another from being matched.

Chapter 3. Technique 9

• Distance, may not be over the set limit to prevent spotlights that are too
far away from each other from being matched.

• Color, after normalizing the colors of the spotlights, the difference between
the same color channel in the two spotlights may not be over the set limit.
This ensures the colors are kept reasonably pure when the spotlights are
aggregated (see Section 3.4 for information on aggregation) and provides
more predictable results.

• Direction, the dot product between the two spotlights have to be above
the set limit. This is to prevent spotlights that are on opposite sides of
corners or similar from being matched.

These tests determine how the spotlights are aggregated, the values used for
them are empirical and thus should be adjusted for the type of graphics in the
application. For instance in our test scene we had only vertex coloring, most color
changes were smooth so a low color limit could be used. If textures are used in
the application, the color limit could be higher to make sure an excessive amount
of spotlights are not created on a heavily textured wall.

3.3 Spotlight Sampler Configuration Refinement
To make sure that spotlights are aggregated in the best way possible, we need to
have a way of determining where sampling spotlights (SSes) should be placed. We
could just take any spotlight and aggregate the ones around it and get reasonable
results if we wanted to. But we can do better, this section describes a way
to improve the placement of the SSes to lower the amount of and improve the
placement of our aggregate spotlights (ASes). The code for our implementation
of this technique can be found in Appendix B.

The high level idea is that we see how many reflective spotlights (RSes) match
an SS with its current placement. Then we aggregate the data of all those match-
ing RSes into a new SS and see how many RSes match with this new data. If
we have more matches with the new SS than with the source SS we can interpret
this new placement as being better because it covers more RSes and is thus of
higher importance. Here follows a more detailed explanation of the process used
to refine the SS placement.

1. All RSes are marked as not used.

2. A “final” SS is created by copying an RS that is not marked as used.

3. The number of RSes that match the final SS is stored.

4. A “test” SS is created by copying the data of the final SS.

Chapter 3. Technique 10

(a) Grid of matching RSes (b) An SS is created (c) SS Configuration is refined.

(d) Configuration is refined
again

(e) And again (f) Until attempting to refine
further does not match more
RSes

Figure 3.3: Spotlight sampler configuration refinement overview in chronological
order.

5. The data of all RSes that match this test SS are aggregated into the test
SS, used spotlights are not aggregated.

6. The number of RSes that match the test SS is stored.

7. The number of spotlights that match the final SS and the test SS are com-
pared. If the test SS has a higher number, it is now considered the final
SS.

8. Steps 4 to 7 are repeated until step 7 fails. At that point all RSes that
match the final SS are marked as used and aggregated into the final SS that
is then put into a list of SSes. Then the process starts over at step 2. When
all RSes have been marked as used, the process ends.

When the process described just above has been executed, every RS has at least
one matching SS.

Figure 3.4 shows what happens without the configuration refinement, more
samplers end up at the edges of the surfaces, and the placement of those samplers

Chapter 3. Technique 11

(a) SS is created (b) All SSes are created (c) Resulting aggregation

Figure 3.4: Spotlight sampler configuration without refinement.

are dependent on the orientation of the shape. However with the sampler refine-
ment the placement is more predictable and less dependent on the orientation of
the surfaces.

3.4 Aggregating Spotlights
The data for reflective spotlights (RSes) are aggregated into aggregate spotlights
(ASes) the following manner.

The direction of several RSes are added to an AS by adding the directions of
all the affecting spotlights and normalizing the result.

The position is aggregated by taking the position of the AS and then adding
a vector to it that goes from the AS to the RS that is divided by the total
amount of RSes that have been already aggregated.

The color of the AS is aggregated by summing the color of all RSes.

3.5 Spotlight Generation
The first step in generating the spotlights is to render out a reflective shadow map
(RSM), RSMs are described in Section 1.2. The RSM textures are retrieved from
the graphics card and each texel in the RSM is used to create a spotlight. The
position for the spotlight is taken from the world position texture, the direction
from the surface normal and the color of the spotlight is the flux.

It is worth noting that it is important to set the world position and flux
textures on the graphics card to floating point, and perhaps a higher-than-default
bit depth if needed. Otherwise data might be clipped, resulting in useless world
position values and potentially less accurate flux values. You generally do not

Chapter 3. Technique 12

need to have high precision for the normals in this technique, so for the normal
texture, 1 byte per component will suffice.

Chapter 4
Conclusion

An experimental application was developed to test the theory behind the proposed
technique. This chapter presents the results gathered from that application, the
analysis of those results, as well as the conclusion to this thesis.

4.1 Results

(a) No indirect illumination (b) One spot per texel (c) Optimized amount of spot-
lights

Figure 4.1: Results of the proposed technique. Top row: with vertex coloring.
Bottom row: without vertex coloring.

The settings used for matching in this test scene are the following. Positional
angle: 0.1, distance: 1.0m, color: 0.1, direction: 0.1. More information regarding
what these values mean can be found in Section 3.2, and the code where they are
defined and used can be found in Appendix A.

To determine the effectiveness of the proposed technique the difference be-
tween two images is created. Figure 4.1b shows what the scene looks like with

13

Chapter 4. Conclusion 14

Figure 4.2: Difference between when using one spotlight per texel and the pro-
posed technique. In this image the 0.0 to 0.5 color range has been remapped to
0.0 to 1.0 to more clearly show the difference.

one spotlight per texel in the reflective shadow map (RSM), Figure 4.1c shows
what the scene looks like when using the spotlights resulting from the simplifica-
tion process. The difference between those two images can be seen in Figure 4.2.

There are observations that can be made from Figure 4.2 regarding the indirect
illumination effect. For instance, the simplified version is darker in some areas
that are further away from reflecting surfaces. This is thought to be the result
of an error in the calculation of the brightness of a pixel that causes for instance
10 lights with 1.0 in brightness spread over an area to illuminate the scene more
than 1 light with 10.0 in brightness.

Since the simplified version has fewer spotlights with a higher power, it is in
some places possible to see the contribution of individual spotlights in the final
image. This is especially evident in Figure 4.3.

Figure 4.4 shows the spotlight placement before and after simplification. There
was a total of 14,767 spotlights in the 12.0x12.0 meter large scene before simplifi-
cation. after the simplification, that amount had been reduced to 270 when using
the matching settings specified in Section 3.2, a 98.2% reduction and an average

Chapter 4. Conclusion 15

(a) One spotlight per texel (b) Optimized amount of spotlights

(c) Difference, the 0.0 to 0.5 color range has
been remapped to 0.0 to 1.0 in this image.

Figure 4.3: Difference between when using one spotlight per texel and the pro-
posed technique.

of 54.7 reflective spotlights (RSes) per aggregate spotlight (AS). To clarify, the
reduction in spotlights will increase as more spotlights RSes are provided. With
the settings specified in the beginning of this chapter, the entire process, from
rendering the RSM to reducing the amount of spotlights takes 303ms on average
in the test scene on a computer using an Intel Xeon E5-1650 CPU at 3.20GHz
and an NVIDIA Quadro 4000 GPU.

Chapter 4. Conclusion 16

(a) Before simplification

(b) After simplification

Figure 4.4: Spotlight placement in test scene.

Chapter 4. Conclusion 17

4.2 Analysis
That the scene gets overall more illuminated by many low-intensity lights than by
a few high-intensity lights is not a big problem for our purposes. In this thesis we
are first and foremost concerned with the placement of the spotlights and not the
accurate rendering of those spotlights. However this is something that will need
to be taken into consideration when implementing and refining this technique if
a goal is to get close to physically accurate lighting. Though if that is a goal,
regular point spotlights are not a good light type simply due to them not being
physically accurate to begin with, it is not possible for any infinitesimal point
in space to emit any amount of light. An area light model would be a better
alternative in that case.

Individual spotlights’ contributions being visible in some areas after simpli-
fication as shown in Figure 4.3 is unacceptable when trying to create a realistic
effect and needs to be alleviated. It could be helped somewhat by lowering the
minimum distance between spotlights, but this would instead result in many more
spotlights being created, making the proposed technique less effective. For some
purposes, this drawback could be acceptable, but to make the technique more
broadly applicable, further work will have to be carried out in this area. A few
suggestions to this end are provided in Section 4.3.

The simplification technique is working as intended, taking the normals, colors
and positioning of the reflective spotlights (RSes) into consideration to create a
satisfactory spotlight distribution. Current implementations of clustered forward
and deferred rendering can handle immense amount of light sources, upwards to
around one million [9]. This makes the proposed technique well suited for some
applications like for instance 3D side scrolling video games, or a tool for level de-
signers to create editable indirect illumination. However to make it more broadly
viable in for instance first person shooters where the player has the freedom to
inspect the world more closely and might more easily notice irregularities in the
indirect illumination, more work has to be done.

4.3 Conclusions and Future Work
A technique has been proposed for offline distribution of spotlights throughout
a scene to create the effect of indirect illumination. A delimited graphics engine
was programmed and the technique was implemented. Images were taken using
the proposed technique and compared with an image using a naive spotlight
distribution method to determine the quality of the result.

The technique works as intended, spotlights are aggregated based on certain
criteria, and all areas that are hit by the directional light in the scene are properly
taken into account in the technique. The number of spotlights resulting from
the process are of an amount that is easily renderable with current real-time

Chapter 4. Conclusion 18

techniques.
However the difference between images showing the scene when using the pro-

posed technique and images where a naive spotlight distribution method is used
do display some differences. While some difference is acceptable, unfortunately
the difference is quite clearly visible in that the contributions of individual spot-
lights can be seen in some areas, hurting the visual quality of the image.

Nonetheless the proposed technique is usable in its current state for some
applications, for instance in 3D side scrolling games or as a tool level designers
can use to create editable indirect illumination.

Research question 1, Can a reflective shadow map (RSM) be used to automat-
ically place spotlights in a 3D environment to create indirect illumination? was
answered. Spotlights were successfully placed in the test scene to produce the
desired effect.

Research question 2, Will all surfaces visible in the RSM have one or more as-
sociated spotlights? was also answered. The technique implemented for matching
spotlights works in such a way that all reflective spotlights (RSes) in the scene
are taken into account, and no parts of the scene that are seen by the RSM are
missing reflected light.

(a) Standard spotlight (b) Near clip spotlight

Figure 4.5: Two spotlight types.

To improve the result and thus extend the usefulness of the proposed tech-
nique, a different type of light could be used to propagate the light. Point spot
lights do not simulate the effects of bouncing light very well because they are
points, and bouncing light is reflected by a surface, not a point.

A spotlight could be edited to include a near clip plane as shown in Figure 4.5b
and the spotlight could be moved far enough into the emitting surface to make
the light start at the surface. The light contribution algorithm would be edited to
have its light contribution be based on the amount of light that is emitted from

Chapter 4. Conclusion 19

the surface covered by the light with its current near clip plane and spotlight
angle.

Another way of solving the issue of what type of light to use would be to
utilize area lights [14]. At that point it would probably be a better idea to not
sample the surfaces by rendering them to pixels, but instead retrieve the vertices
that are exposed to the sun light from the graphics card. They could then be
made into area lights and used for indirect illumination.

The proposed technique is static and not optimized for being updated in real
time. Exploring how this technique could be extended to real time is an area for
future work. Evaluating other types of data structures for the spotlights, moving
the technique to the graphics processing unit (GPU) or doing partial updates
would all be good steps in that direction.

The technique could also be extended by adding more than one bounce, where
each created aggregate spotlight (AS) would create new spotlights if it is bright
enough in a similar way to how it works with the directional light.

References

[1] Y. Tokuyoshi, T. Sekiney, and S. Ogakiz, “Fast global illumination baking via
ray-bundles,” in SIGGRAPH Asia 2011 Sketches, SA’11, December 12, 2011
- December 15, 2011, ser. SIGGRAPH Asia 2011 Sketches, SA’11. Associ-
ation for Computing Machinery, 2011, pp. ACM Spec. Interest Group Com-
put. Graph. Interact.; Tech. (SIGGRAPH); ACM Special Interest Group on
Computer–Human; Interaction (SIGCHI).

[2] “Lightmap,” Aug. 2011, [Accessed 2014-05-26]. [Online]. Available:
https://developer.valvesoftware.com/wiki/Lightmap

[3] “Lightmass global illumination,” May 2014, [Accessed 2014-05-26]. [Online].
Available: https://docs.unrealengine.com/latest/INT/Engine/Rendering/
LightingAndShadows/Lightmass/index.html

[4] “Lightmapping quickstart,” Mar. 2013, [Accessed 2014-05-26]. [Online]. Avail-
able: http://docs.unity3d.com/Documentation/Manual/Lightmapping.html

[5] “Counter-strike: Global offensive,” Aug. 2013, [Accessed 2014-05-26]. [On-
line]. Available: https://developer.valvesoftware.com/wiki/Counter-Strike:
_Global_Offensive

[6] T. Annen, J. Kautz, F. Durand, H.-P. Seidel, A. Keller, and H. W. Jensen,
“Spherical harmonic gradients for mid-range illumination,” in Rendering
Techniques 2004 : Eurographics Symposium on Rendering. Eurographics,
2004, pp. 331–336.

[7] A. Kaplanyan and C. Dachsbacher, “Cascaded light propagation volumes for
real-time indirect illumination,” in Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. ACM, 2010, p. 99–107.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1730821

[8] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “Interactive
indirect illumination using voxel-based cone tracing: An insight,” in ACM
Special Interest Group on Computer Graphics and Interactive Techniques
Conference, SIGGRAPH’11, August 7, 2011 - August 11, 2011, ser. ACM

20

References 21

SIGGRAPH 2011 Talks, SIGGRAPH’11. Association for Computing Ma-
chinery, 2011, p. ACM Spec. Interest Group Comput.; Graph. Interact. Tech.
(SIGGRAPH).

[9] O. Olsson, M. Billeter, and U. Assarsson, “Clustered deferred and forward
shading,” in 4th ACM SIGGRAPH / Eurographics Symposium on High-
Performance Graphics, HPG 2012, June 25, 2012 - June 27, 2012, ser. High-
Performance Graphics 2012, HPG 2012 - ACM SIGGRAPH / Eurographics
Symposium Proceedings. Eurographics Association, 2012, pp. 87–96.

[10] C. Dachsbacher and M. Stamminger, “Reflective shadow maps,” in I3D 2005:
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, April
3, 2005 - April 6, 2005, ser. Proceedings of the Symposium on Interactive
3D Graphics. Association for Computing Machinery, 2005, pp. 203–208.

[11] “Radeon™ HD 7900 series graphics real-time de-
mos.” [Online]. Available: http://developer.amd.com/
resources/documentation-articles/samples-demos/gpu-demos/
amd-radeon-hd-7900-series-graphics-real-time-demos/

[12] T. Harada, J. McKee, and J. C. Yang, “Forward+: Bringing deferred lighting
to the next level,” Eurographics, May 2012.

[13] T. Harada, J. C. Yang, and J. McKee, “Forward+: A step toward film-style
shading in real time,” in GPU Pro4 advanced rendering techniques, W. Engel,
Ed. Boca Raton: CRC Press, 2013, pp. 115–135.

[14] J. Arvo, “The irradiance jacobian for partially occluded polyhedral
sources,” in Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’94. New
York, NY, USA: ACM, 1994, p. 343–350. [Online]. Available: http:
//doi.acm.org/10.1145/192161.192250

Appendix A
Matching technique

The matching technique is an important part of the proposed techinque. It de-
termines whether the data of two spotlights are within a predefined range of
each other. If they are, that means they are potential matches when talking
about sampling spotlights (SSes). When aggregating spotlights, only matching
reflective spotlights (RSes) can be aggregated into an aggregate spotlight (AS).

1 bool Globa l I l l umina t i on : : Matches (const LightSpot &as , const LightSpot &r s) const
{

2 // Maximum al lowed d i f f e r e n c e s .
3 const f loat max_direct ion_di f f e rence = 0 .1 f ;
4 const f loat max_color_di f ference = 0 .1 f ;
5 const f loat max_depth_difference = 0 .1 f ;
6
7 // Ca l cu la te ac tua l d i f f e r e n c e s .
8 f loat d i r e c t i o n_d i f f e r e n c e = glm : : dot (glm : : normal ize (as . d i r e c t i o n ()) , glm : :

normal ize (r s . d i r e c t i o n ())) ;
9 f loat c o l o r_d i f f e r e n c e = glm : : l ength (glm : : normal ize (glm : : vec3 (as . c o l o r () . rgb))

− glm : : normal ize (glm : : vec3 (r s . c o l o r () . rgb))) ;
10 glm : : vec4 as_to_rs = r s . p o s i t i o n () − as . p o s i t i o n () ;
11 f loat depth_di f f e r ence = glm : : abs (glm : : dot (as_to_rs , as . d i r e c t i o n ())) ;
12
13 // Return true i f a c tua l d i f f e r e n c e s are lower than maximum d i f f e r e n c e s .
14 return
15 1 .0 f − d i r e c t i o n_d i f f e r e n c e < max_direct ion_di f f e rence &&
16 c o l o r_d i f f e r e n c e < max_color_dif ference &&
17 depth_di f f e r ence < max_depth_difference ;
18 }

22

Appendix B
Configuration refinement technique

The proposed technique was implemented in an experimental application written
in C++. This appendix contains the code used to optimize the configuration of
the sampling spotlights.

1 void Globa l I l l umina t i on : : S imp l i f y () {
2 std : : vector<LightSpot> spot l i ght_sample r s ;
3 const unsigned int num_spotlight = my_octree_spotlight_ptr−>num_light_spots () ;
4 unsigned int used_spot l ight = 0 ;
5
6 while (used_spot l ight < num_spotlight) {
7 for (unsigned int i = 0 ; i < num_spotlight ; i++){
8 i f (! my_octree_spotlight_ptr−>l ight_spot s () [i] . used ()) {
9 // Ref ine s p o t l i g h t samplers p o s i t i o n i n g .

10 LightSpot current_sampler ;
11 std : : vector<LightSpot∗> current_matches ;
12 LightSpot test_sampler = my_octree_spotlight_ptr−>l ight_spot s () [i] ;
13 std : : vector<LightSpot∗> test_matches = GetMatches (test_sampler , ∗

my_octree_spotl ight_ptr) ;
14 do{
15 // Set cur rent sampler to the t e s t sampler .
16 current_sampler = test_sampler ;
17 // Get the matching s p o t l i g h t s from the cur rent t e s t samplers data .
18 current_matches = test_matches ;
19 // Make a new sampler from the aggregate data o f a l l cu r r ent matches .
20 test_sampler = AggregateSevera lSpot l i ghtData (current_matches) ;
21 // Get the matches at t h i s new sampling l o c a t i o n .
22 test_matches = GetMatches (test_sampler , ∗my_octree_spotl ight_ptr) ;
23 // Do i t agian i f we have more matches .
24 } while (test_matches . s i z e () > current_matches . s i z e ()) ;
25 // Set f i n a l s p o t l i g h t sampler c on f i gu r a t i on .
26 current_sampler = AggregateSevera lSpot l i ghtData (current_matches) ;
27 // Add the cur rent s p o t l i g h t sampler to the l i s t .
28 spot l i ght_sample r s . push_back (current_sampler) ;
29 // Mark a l l s p o t l i g h t s that match t h i s s p o t l i g h t sampler as used .
30 for (LightSpot ∗ spot_ptr : current_matches) {
31 spot_ptr−>set_used (true) ;
32 used_spot l ight++;
33 }
34 break ;
35 }
36 }
37 }
38
39 // Aggregate s p o t l i g h t s us ing the r e s u l t i n g s p o t l i g h t samplers .
40 AggregateSpot l i ght s (spot l i ght_sample r s) ;
41 }

23

